# 空芯光子晶体光纤吸收池的激光稳频技术

黄崇德<sup>1,2</sup> 陈迪俊<sup>1\*</sup> 蔡海文<sup>1</sup> 叶 青<sup>1</sup> 刘 晔<sup>3</sup> 瞿荣辉<sup>1</sup> 陈卫标<sup>1</sup> <sup>(1)</sup>中国科学院上海光学精密机械研究所激光信息传输与探测技术重点实验室,上海 201800 <sup>2</sup>中国科学院大学,北京 100049

<sup>3</sup> 中国科学院安徽光学精密机械研究所安徽光子器件与材料重点实验室, 安徽 合肥 230031

**摘要** 针对星载积分路径差分吸收(IPDA)激光雷达的应用需求,研制了一套利用空芯光子晶体光纤(HC-PCF)作 为吸收池,以 CO<sub>2</sub> 气体 1.57 μm 处的吸收线作为频率参考,基于频率调制光谱稳频技术的激光稳频系统。结合其 工作原理,建立仿真模型,计算了 CO<sub>2</sub> 气压、光谱调制频率以及调制深度对稳频误差信号的影响,给出最优化的设 计参数。并且与实验测试数据进行了比对,实验数据与计算结果吻合。报道了系统的稳频效果,给出进一步提升 稳频性能的方案意见。

关键词 激光器;频率稳定;空芯光子晶体光纤;空间光学;积分路径差分吸收雷达
 中图分类号 TN249 文献标识码 A doi: 10.3788/CJL201441.0802006

# Laser Frequency Stabilization Technology Based on Hollow-Core Photonics Crystal Fiber Gas Cell

Huang Chongde<sup>1,2</sup> Chen Dijun<sup>1</sup> Cai Haiwen<sup>1</sup> Ye Qing<sup>1</sup> Liu Ye<sup>3</sup> Qu Ronghui<sup>1</sup> Chen Weibiao<sup>1</sup>

<sup>1</sup> Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Fine Mechanics and Optics, Chinese Academy of Sciences, Shanghai 201800, China

<sup>2</sup> University of Chinese Academy of Sciences, Beijing 100049, China

<sup>3</sup> Anhui Provincial Key Laboratory of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China

**Abstract** A laser frequency stabilization system for the space integrated path differential absorption (IPDA) lidar is developed. The gas cell is made of the hollow-core photonics crystal fiber (PCF) filled with the  $CO_2$  and the absorption line around 1.57  $\mu$ m is used as the laser frequency reference. The frequency modulation spectroscopy technique is used to stabilize the laser frequency. The impact of the pressure of  $CO_2$ , the modulation frequency and depth on the error signal's slope is simulated, and the optimal parameters are given. The computed results are coincident with the measured results. At last, the performance of the laser frequency stabilization is shown, and the suggestion for further improvement is given.

Key words lasers; frequency stabilization; hollow-core photonics crystal fiber; space optics; integrated path differential absorption lidar

**OCIS codes** 140.3425; 060.4005; 350.6090; 280.1910

收稿日期: 2014-02-18; 收到修改稿日期: 2014-03-13

**基金项目:**国家自然科学基金(61108028,61178031)、上海市科委重点基础项目(11JC1413500)、民用航天项目 (D030104)、中国科学院无机功能材料与器件重点实验室开放课题(KLIFMD-2012-06)

**作者简介:**黄崇德(1986—),男,博士研究生,主要从事激光器稳频技术方面的研究。E-mail: huangcd@siom.ac.cn

导师简介: 瞿荣辉(1972—), 男, 研究员, 博士生导师, 主要从事光电子器件与信息系统技术等方面的研究。

E-mail:rhqu@siom.ac.cn

\* 通信联系人。E-mail: djchen@siom.ac.cn

# 1 引 言

随着经济与文化的高速发展,人们越来越重视环 境气候问题对社会可持续发展的影响,其中一个主要 问题就是温室气体对全球气候的影响。研究发现,如 今大气中 CO<sub>2</sub> 气体浓度要远高于过去 420 000 年 前<sup>[1]</sup>,加上近年来全球气候变暖和一些恶劣天气的出 现,已经说明大气中 CO<sub>2</sub>含量与气候变化是存在密切 联系的。因此,需要一种手段能够观测全球范围的 CO<sub>2</sub>浓度分布和变化,以了解和分析 CO<sub>2</sub> 的源头和碳 元素的循环演化过程。星载积分路径差分吸收 (IPDA)激光雷达技术就是有效的测量手段之一,该 技术基于主动激光差分吸收光谱方法,能够不依赖于 太阳光反射,不易受云或大气气溶胶的干扰,能实现 全天候、高精度的 CO<sub>2</sub> 浓度测量<sup>[2-3]</sup>。

为了保证星载 IPDA 激光雷达测量的功能和高 精度,要求探测光频率精确锁定在 CO<sub>2</sub> 的1.57 μm 吸收线上,并且要有较高的频率稳定度,因此需要一 个稳频激光器作为其种子光源<sup>[3]</sup>。但由于 CO<sub>2</sub> 在 1.57μm 处的吸收强度较弱,需要有长光程的吸收 池来保证足够的信噪比(SNR)。传统的长光程体光 学吸收池如 White 池和 Herriott 池,体积大,质量 重,要实现高气密性在工艺上也存在较大难度,不适 合星载需求<sup>[4-5]</sup>。近年来日益成熟的空芯光子晶体 光纤(HC-PCF)成为制作小型化微腔结构气体吸收 池的很好的选择<sup>[6-7]</sup>。空芯光子晶体光纤可以同时 作为气体的容器和导光介质,能很好地满足激光与 气体较长的相互作用距离的要求,并且光纤结构可 弯曲,质量轻,通过与普通光纤熔接就能实现优异的 气密效果,能很好地满足星载要求。

本文主要报道了基于光子晶体光纤(PCF)吸收 池的激光稳频系统的理论模型,计算了关键参数对 误差信号的影响,给出了优化设计的结果,并结合实 验测试数据进行了对比和分析,给出了目前已经实 现的稳频结果以及进一步提升稳频性能的方案。

# 2 系统原理与仿真模型

该套激光稳频系统采用了频率调制光谱技术来 实现频率稳定,其系统框图如图1所示,分布式反馈 (DFB)半导体激光器(LD)输出光经过隔离器 (ISO),由光纤耦合器(OC)分为两路,一路作为种 子光输出,另一路经电光相位调制器(EOM)调制后 注入到充有 CO<sub>2</sub>气体的 HC-PCF 吸收池,再由光电 探测器(PD)转换为探测电信号。直接数字频率合 成器(DDS)为 EOM 提供射频调制信号,并在 PD 后 端电路与探测电信号进行混频解调,得到的误差信 号如图1左上角插图所示,利用误差信号中间的线 性变化区域来表征激光频率的变化情况,经比例、积 分、微分(PID)伺服控制系统调节 DFB 激光器的出 光频率,实现闭环反馈。图中黑色粗实线为光纤链 路,虚线为电子学链路。



#### 图 1 基于 PCF 吸收池的激光稳频系统原理框图

Fig. 1 Schematic of the frequency stabilization laser system based on PCF gas cell

所采用的稳频方案与利用法布里-珀罗干涉仪 作为频率参考的 Pound-Drever-Hall 稳频技术类 似,需要先对激光的相位进行调制,经过频率参考源 后加载上有用的频率信息,再经电路混频解调产生 误差信号来实现闭环反馈<sup>[8-10]</sup>。首先,激光注入到 EOM 进行相位调制,可以表示为

 $E_{\rm m} = |E_0| \exp[i(\omega t + \beta \sin \Omega t)],$  (1) 式中  $E_0$  为相位调制器的入射光电场强度;  $\omega$  为角频 率;  $\beta$ 为 EOM 对激光的调制深度;  $\Omega = 2\pi f$  为调制角 频率,其中 f 为调制频率; E<sub>m</sub> 为调制后的输出光的 电场强度,与 E<sub>0</sub> 同是复数表示。(1)式用贝塞尔函 数展开后可以表示为

$$E_{\rm m} = |E_0| \exp(i\omega t) \sum_{n=-\infty}^{\infty} J_n(\beta) \exp(in\Omega t), \quad (2)$$

式中 n 是贝塞尔函数的阶数,代表激光经过相位调制后产生的边频的阶数。调制后的光注入 CO<sub>2</sub> 气体吸收池,由于气体对光强的吸收,光强的损耗满足比尔-朗伯定律,输出光的光强可以表示为

$$P_{\text{out}} = |E_{\text{m}}F(\omega)|^{2} = P_{\text{m}}\exp[-\alpha(\omega)L], \quad (3)$$
$$F(\omega) = \exp\left[-\frac{1}{2}\alpha(\omega)L\right]\exp(-i\omega n_{\text{cell}}L), \quad (4)$$

式中  $F(\omega)$ 为 CO<sub>2</sub>气体对激光电场强度的传递函数;  $n_{cell}$ 是光在吸收池内传播的折射率;L 是激光在气体 中传播的光程; $\alpha(\omega)$ 是气体的吸收系数; $P_m$  和  $P_{out}$ 分别表示吸收池的入射光强和出射光强。为了能全 面考察不同气压条件下,气体对光的吸收,一般采用 Voigt 线型计算吸收系数<sup>[11-12]</sup>:

$$\alpha(\omega) = SN \frac{y}{\pi} \int_{-\infty}^{+\infty} \frac{\exp(-\xi^2)}{y^2 + [(\omega - \omega_0/\alpha_{\rm D}) - s - \xi]^2} \mathrm{d}\xi,$$
(5)

式中 S是吸收线强度;N是数值密度;aD是多普勒线 宽;y表示气体分子间碰撞引起的展宽,是展宽量与 aD的比值;w0是气体吸收线中心的角频率;s表示气 压导致的吸收线中心的频移,是频移量与 aD 的比 值。结合(2)式和(3)式,可以得到

$$P_{\text{out}}(\boldsymbol{\omega}) = 2 |E_0|^2 \cos \Omega t \sum_{n=0}^{+\infty} \{ J_n(\beta) J_{n+1}(\beta) \operatorname{Re} \{ F(\boldsymbol{\omega} + n\Omega) F^* [\boldsymbol{\omega} + (n+1)\Omega] - F^* (\boldsymbol{\omega} - n\Omega) F[\boldsymbol{\omega} - (n+1)\Omega] \} \} + 2 |E_0|^2 \sin \Omega t \cdot \sum_{n=0}^{+\infty} \{ J_n(\beta) J_{n+1}(\beta) \operatorname{Im} \{ F(\boldsymbol{\omega} + n\Omega) F^* [\boldsymbol{\omega} + (n+1)\Omega] - F^* (\boldsymbol{\omega} - n\Omega) F[\boldsymbol{\omega} - (n+1)\Omega] \} \},$$
(6)

式中只具体考虑了对误差信号有用的调制频率的一 倍频项,直流项和高倍频项在混频后会被滤波去掉, 因而在(6)式中省略了直流项和高倍频项。激光经 过 CO2吸收池加载上频率信息,被 PD 接收,再经过 混频解调表示为

 $S_{\rm err} = \eta_{\rm sys} P_{\rm out}(\omega) \cos(\Omega t + \delta)$ , (7) 式中 $\eta_{\rm sys}$ 表示整个稳频系统的响应效率,包括探测器 的光电转换效率、光学链路的损耗、电路的放大和衰 减等一系列过程共同作用的结果; $\delta$ 表示 DDS 产生 的本振信号相对 PD 探测信号的相位延迟量,选择 合适的 $\delta$ 值可以使输出误差信号的幅值最大。因为 误差信号是混频输出的低频信号,电路中会进行低 通滤波,所以只需要考虑计算结果的直流项。误差 信号中间的线性区域是用于频率鉴别,斜率越大,意 味着同样频率变化尺度下,对应的电压变化量更大, 鉴频灵敏度更高。除了 EOM 的调制频率和调制深度,CO2 的气压也会对误差信号的斜率产生影响。因为误差信号线性区域的幅度和宽度分别与 CO2 吸收线的强度和线宽成正比,而 CO2 气压与吸收线的强度成正比,与线宽成反比<sup>[11]</sup>,所以需要找到一个合适的气压使得误差信号的斜率最大。

另外,由于 CO<sub>2</sub> 在 1.57  $\mu$ m 处的吸收强度比较弱,通常会比 C<sub>2</sub>H<sub>2</sub> 在 1.53  $\mu$ m 处的吸收线小 2~3 个数量级,所以需要比较长的吸收长度来提高系统的信 噪比以及误差信号的斜率。当 $\alpha(\omega)L\ll1$ 时,有

$$F(\omega) \approx \left[1 - \frac{1}{2}\alpha(\omega)L\right] \exp(-i\omega n_{\text{cell}}L), \quad (8)$$

所以,结合(5)式、(6)式和(8)式,可以得到误差信号 幅度与吸收长度的近似关系表示如下:

$$S_{\rm err} \approx |E_0|^2 \eta_{\rm sys} L \sum_{n=0}^{+\infty} J_n(\beta) J_{n+1}(\beta) \{ \alpha(\omega - n\Omega) + \alpha [\omega - (n+1)\Omega] - \alpha(\omega + n\Omega) - \alpha [\omega + (n+1)\Omega] \},$$

(9)

即误差信号与吸收长度是近似呈线性关系的,吸收 长度越长,CO2 吸收光谱的信噪比和误差信号的斜 率会越大。在本系统中,选用了 15 m 左右的吸收 长度。

根据前文所述的仿真模型,可以得到不同气压 下,误差信号斜率随 EOM 调制频率和调制深度的 变化规律。因为此时 η<sub>sys</sub>取值为 1,误差信号的幅值 是无量纲的,所以斜率的单位为 GHz<sup>-1</sup>。表 1 是在 不同 CO<sub>2</sub> 气压下,选择优化的调制频率和调制深度 时误差信号斜率可能达到的极大值的变化情况;以 及斜率达到极大值时调制频率和调制深度的优化 值。可以看出,当 CO<sub>2</sub> 气压在 7 kPa 左右时,误差 信号斜率达到最大,即 0. 1837 GHz<sup>-1</sup>,并且随着气 压的增大,CO<sub>2</sub> 吸收线宽度的增加,调制频率的优 化值也在增加。图 2 是 CO<sub>2</sub> 气压在 7 kPa 条件下, 误差信号斜率随调制频率和调制深度变化的三维 图,当斜率最大时,调制频率为145 MHz,调制深度为3.5 rad。

表 1 不同 CO<sub>2</sub> 气压下的仿真结果

Table 1 Simulation results with different CO2 pressures

| CO <sub>2</sub> pressure /kPa       | 1      | 4      | 7      | 10     |
|-------------------------------------|--------|--------|--------|--------|
| Slope of error signal $/GHz^{-1}$   | 0.0696 | 0.1648 | 0.1837 | 0.1773 |
| Optimized modulation frequency /MHz | 110    | 130    | 145    | 160    |
| Optimized modulation depth /rad     | 3.7    | 3.5    | 3.5    | 3.5    |





Fig. 2 Variation of the error signal's slope with the modulation frequency and depth when the  $\rm CO_2$  pressure is 7 kPa

## 3 实验结果

在上述仿真计算结果的基础上,设计并完成了 一套基于 HC-PCF 吸收池的激光稳频系统,采用了 NKT Photonics 公司的 HC-1550-02 型号的 HC-PCF 作为气体吸收池,在15m 长的 HC-PCF 中充 入 CO<sub>2</sub> 气体,输入端与普通单模光纤(SMF)熔接, 输出端与多模光纤(MMF)熔接,保证吸收池良好的 气密性和较低的插入损耗<sup>[13]</sup>。制备完成后的 HC-PCF 吸收池的透射谱如图 3 所示,由于吸收池在制 备过程中光纤内气压控制精度有限,实际达到的气 压约为 6.2 kPa,透射谱的半峰全宽(FWHM)为 595 MHz,偏离吸收线处的插入损耗约为 5.6 dB, 图 3 透射谱中 CO<sub>2</sub> 吸收线两边的振荡背景是由于 HC-PCF 中基模与高阶模、表面模相互作用引起 的[14-15]。这一振荡背景易受环境温度和应力的影 响,会成为影响稳频性能的主要噪声之一。在该套 激光稳频系统上,分别单独改变 EOM 的调制频率、 调制深度以及 CO₂ 气压,考察各参数对误差信号斜 率的影响,与仿真结果进行了对比,最后对系统的稳 频性能进行了测试。

#### 

图 3 HC-PCF 吸收池透射谱

Fig. 3 Transmission spectrum of the HC-PCF gas cell 平坦,对 130 MHz 信号的放大倍数最高,约是 140~150 MHz信号的1.8倍,因此调制频率选择在 130 MHz 能使误差信号斜率最大;另外受限于电路 驱动能力,调制深度只能达到2.08 rad。鉴于系统 性能的限制,实际最佳工作参数与前文理论计算结 果有所不同,将根据实际参数计算仿真结果,并与实 验数据相比较。

在考察调制频率对误差信号斜率影响的过程 中,调制深度为 2.08 rad, HC-PCF 吸收池内 CO<sub>2</sub> 气压为 6.2 kPa,调制频率测试范围为 100~ 150 MHz。在测试前先测定电路的频率响应系数, 如图 4 所示;再把测得的误差信号除以该系数作为 实验测试结果,以排除电路频率响应不平坦的影响, 如图 5 所示。仿真结果显示,由于调制深度只能达 到2.08 rad,调制频率需要增加到 175 MHz 误差信 号斜率才能达到极大值,但由于 EOM 的调制带宽 限制,只能比较调制频率在 150 MHz 以下的实验数



### 图 4 电路的频率响应系数 Fig. 4 Circuit's frequency response factor

### 3.1 EOM 调制频率和调制深度的影响

在测试过程中发现,电路的频率响应特性并不

据,误差信号斜率是随调制频率的增加而增大的,与 仿真结果吻合。





Fig. 5 Experiment and simulation results of the error signal's slope versus modulation frequency

随后考察了调制深度对误差信号斜率的影响, 由于电路频率响应特性的不平坦,为了让误差信号 幅度最大,选择调制频率为130 MHz,HC-PCF 吸 收池内 CO<sub>2</sub>气压为6.2 kPa,调制深度测试范围为 0.79~2.08 rad,测试结果与仿真对比如图6所示。 仿真结果显示,在调制深度达到2.80 rad 附近误差 信号的斜率会达到最大值,但是由于电路驱动能力 限制,只能考察调制深度在2.08 rad 以下的实验数 据,误差信号斜率随调制深度的增加而增大,与仿真 结果吻合。



#### 3.2 CO<sub>2</sub> 气压的影响

为了考察 CO<sub>2</sub> 气压对误差信号斜率的影响,要 求气压可以调节控制,HC-PCF 制备完成后无法再 改变内部气压,所以这里使用一个总光程为 16 m 的 White 池代替光子晶体光纤吸收池进行测试。 首先测试了在不同气压下 CO<sub>2</sub> 的吸收谱线,如图 7 所示,气压越大,线宽越宽,同时吸收强度也越强;同 时也可以看出,在吸收线两侧区域,没有与 HC-PCF 吸收池类似的振荡背景。此时 EOM 调制频率为 130 MHz,调制深度为 2.08 rad, CO<sub>2</sub> 气压测试范围 为 1~50 kPa,测试结果如图 8 所示,在 7 kPa 附近 误差信号斜率达到最大值,气压过高或过低误差信 号斜率都会减小,与仿真结果吻合。



图 7 不同 CO<sub>2</sub> 气压下的吸收光谱





图 8 不同 CO<sub>2</sub> 气压下误差信号线性区域斜率变化 曲线的实验数据和仿真结果

Fig. 8 Experiment and simulation results of the slope of the error signal's linear area versus CO<sub>2</sub> pressure

#### 3.3 稳频结果

该套激光稳频系统工作参数选择为130 MHz 调制频率,2.08 rad 调制深度,以 HC-PCF 吸收池 作为载体,CO<sub>2</sub> 气压为6.2 kPa。由于 HC-PCF 的 透射光谱的振荡背景易受环境温度的影响,温度改 变,振荡背景会发生漂移,进而引起误差信号的变 化,造成激光频率稳定点的变化<sup>[3]</sup>。为了减少由于 HC-PCF 吸收池背景振荡温度漂移引起的激光频率 不稳定,可以对吸收池进行温控或者隔温处理,来保 证频率参考本身的可靠性。这里比较了 HC-PCF 吸收池直接放置在空气中以及放置在隔温箱两种状 态下激光器的稳频结果。如图 9 所示,当 HC-PCF 吸收池放置在空气中时,测试时间为4 h,期间温度 变化大约为1.8 °C,频率变化峰峰值为44.4 MHz; 当 HC-PCF 放入隔温箱后,温度变化约为0.6 °C, 激光频率变化的峰峰值为9.7 MHz。



图 9 激光系统的稳频性能 Fig. 9 Frequency stabilization performance of the laser system

# 4 结 论

报道了一套基于 HC-PCF 吸收池的激光稳频 系统,把激光频率稳定在 CO<sub>2</sub> 的 1.57 μm 处的吸收 线上,建立模型;分析了 EOM 调制频率、调制深度 以及 CO<sub>2</sub> 气压对误差信号的影响,给出了优化参 数;并对稳频系统进行了测试,实验测试数据与仿真 结果吻合,最终实现了在 4 h内 9.7 MHz 峰峰值的 频率稳定性。在后续的系统优化工作中,可以通过 改善 HC-PCF 的模式特性以减少背景振荡,改进电 路的频率响应特性,提高 EOM 的调制频率以及调 制深度的方法,来进一步提高激光频率的稳定性。

### 参考文献

1 J R Petit, J Jouzel, D Raynaud, *et al.*. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735): 429-436.

- 2 A Fix, C Budenbender, M Wirth, *et al.*. Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO<sub>2</sub> and CH<sub>4</sub>[J]. SPIE, 2011, 8182; 818206.
- 3 K Numata, J R Chen, S T Wu, et al.. Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide [J]. Appl Opt, 2011, 50(7): 1047-1056.
- 4 J U White. Long optical paths of large aperture[J]. J Opt Soc Am, 1942, 32(5): 285-288.
- 5 J Altmann, R Baumgart, C Weitkamp. Two-mirror multipass absorption cell[J]. Appl Opt, 1981, 20(6): 995-999.
- 6 P S Light, F Couny, F Benabid. Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber[J]. Opt Lett, 2006, 31(17): 2538-2540.
- 7 P T Marty, J Morel, T Feurer. All-fiber multi-purpose gas cells and their applications in spectroscopy[J]. J Lightwave Technol, 2010, 28(8): 1236-1240.
- 8 E D Black. An introduction to Pound-Drever-Hall laser frequency stabilization[J]. Am J Phys, 2001, 69(1): 79-87.
- 9 Z Bian, C Huang, D Chen, *et al.*. Seed laser frequency stabilization for Doppler wind lidar[J]. Chin Opt Lett, 2012, 10 (9): 019405.
- 10 M Zhou, L Huang, X Xu. Development of a frequency-stabilized 555. 8 nm laser[J]. Chin Opt Lett, 2013, 11(12): 121402.
- 11 J Henningsen, H Simonsen. The (22°1 00°0) band of CO<sub>2</sub> at 6348 cm<sup>-1</sup>: linestrengths, broadening parameters, and pressure shifts[J]. J Mol Spectroscopy, 2000, 203(1): 16-27.
- 12 P L Varghese, R K Hanson. Collisional narrowing effects on spectral line shapes measured at high resolution[J]. Appl Opt, 1984, 23(14): 2376-2385.
- Wang Haibin, Liu Ye, Wang Jinzu, *et al.*. Preparation of allfiber low-pressure CO<sub>2</sub> gas cell based on hollow-core photonic crystal fiber[J]. Acta Optica Sinica, 2013, 33(7): 0706007.
   王海宾,刘 晔,王进祖,等. 光纤型空芯光子晶体光纤低压 CO<sub>2</sub> 气体腔的制备[J]. 光学学报, 2013, 33(7): 0706007.
- 14 C M Smith, N Venkataraman, M T Gallagher, et al.. Low-loss hollow-core silica/air photonic bandgap fibre[J]. Nature, 2003, 424(6949): 657-659.
- 15 J M Fini, J W Nicholson, R S Windeler, et al.. Low-loss hollowcore fibers with improved single-modedness [J]. Opt Express, 2013, 21(5): 6233-6242.

#### 栏目编辑:王晓琰